• Φ
  • About
  • Contributors
  • Resources
  • Contact
  • Store
  • Site Map

The Golden Ratio: Phi, 1.618

Golden Ratio, Phi, 1.618, and Fibonacci in Math, Nature, Art, Design, Beauty and the Face. One source with over 100 articles and latest findings.

The Golden Ratio - The Divine Beauty of Mathematics PhiMatrix Golden Ratio Design and Analysis Software Elliott Wave Investing Principles Ka Gold Sacred Geometry Jewelry Phee Phi Pho Phum Coffee Mug Golden Ratio Phi Collage T Shirt
  • Phi
  • Design/Art
  • Beauty/Face
  • Life
  • Math
  • Geometry
  • Markets/Gaming
  • Cosmos
  • Theology
  • Pi
  • Blog

The Golden Ratio has unique mathematical properties. It is the only positive number whose square is one greater than itself. It is the only positive number whose reciprocal is one less than itself. It is also the found in limits and the Fibonacci series. These properties make it the unique solution to optimize design, in practicality and in beauty. Luca Pacioli wrote, "Without mathematics there is no art.”

Fibonacci 60 Repeating Pattern

October 30, 2016 by Gary Meisner 54 Comments

fibonacci-60-digit-repeat-cycle-360x200

The last digit of the numbers in the Fibonacci Sequence form a pattern that repeats after every 60th number: 0, 1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7, 5, 2, 7, 9, 6, 5, 1, 6, 7, 3, 0, 3, 3, 6, 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1 This pattern can be seen in the following list of the first 72 Fibonacci … [Read more...]

Mathematics of Phi, 1.618, the Golden Number

May 16, 2012 by Gary Meisner 63 Comments

quadratic-formula

Phi, Φ, 1.618…, has two properties that make it unique among all numbers. If you square Phi, you get a number exactly 1 greater than itself: 2.618…, or Φ²  = Φ + 1. If you divide Phi into 1 to get its reciprocal, you get a number exactly 1 less than itself: 0.618…, or 1 / Φ = Φ - 1. These relationships are derived from the dividing a line at its golden section point, … [Read more...]

Powers of Phi

May 15, 2012 by Gary Meisner 35 Comments

Phi has a unique additive relationship. The powers of phi have unusual properties in that they are related not only exponentially, but are additive as well.  We know that: Phi 2 = Phi + 1 Which is the same as: Phi 2 = Phi 1 + Phi 0 And this leads to the fact that for any n: Phi n+2 = Phi n+1 + Phi n Thus each two successive powers of phi add to the next … [Read more...]

Pi, Phi and Fibonacci

May 15, 2012 by Gary Meisner 90 Comments

Phi (Φ) and pi (Π) and Fibonacci numbers can be related in several ways:  The Pi-Phi Product and its derivation through limits The product of phi and pi, 1.618033988...  X  3.141592654...,  or  5.083203692, is found in golden geometries: Golden Circle Golden Ellipse Circumference = p * Φ Area = p * Φ Ed Oberg and Jay A. Johnson have developed a unique expression … [Read more...]

The Phi Formula

May 15, 2012 by Gary Meisner 24 Comments

Is the formula for Phi unique or should we say, "Hey, it's just an expression!" It's been noted by some who say they can "demystify phi" that phi is just one of an infinite series of numbers that can be constructed from the following expression using the square root (√) of integer numbers: (1+√n) / 2 It just so happens that you get phi when you let n equal 5.  Let n be other … [Read more...]

Pascal’s Triangle

May 15, 2012 by Gary Meisner 46 Comments

pascals-triangle-fibonacci-150x150

The Fibonacci Series is found in Pascal's Triangle. Pascal's Triangle, developed by the French Mathematician Blaise Pascal, is formed by starting with an apex of 1.  Every number below in the triangle is the sum of the two numbers diagonally above it to the left and the right, with positions outside the triangle counting as zero. The numbers on diagonals of the triangle add … [Read more...]

Fibonacci 24 Repeating Pattern

May 15, 2012 by Gary Meisner 51 Comments

The Fibonacci sequence has a pattern that repeats every 24 numbers. Numeric reduction is a technique used in analysis of numbers in which all the digits of a number are added together until only one digit remains.  As an example, the numeric reduction of 256 is 4 because 2+5+6=13 and 1+3=4. Applying numeric reduction to the Fibonacci series produces an infinite series of 24 … [Read more...]

89, 109 and the Fibonacci Sequence

May 15, 2012 by Gary Meisner 25 Comments

The reciprocal of 89, a Fibonacci number, is based on the Fibonacci series. This is a little curiousity involving the number 89, one of the Fibonacci series numbers. 1/89 is a repeating decimal fraction with 44 characters: .01123595505617977528089887640449438202247191 You can see the beginning of the Fibonacci sequence in the first 6 digits of the decimal equivalent of … [Read more...]

Number Five (5) and Phi

May 15, 2012 by Gary Meisner 15 Comments

The number 5 is intrinsically related to Phi and the Fibonacci series. Phi can be derived from several formulas based on the number 5.  The most traditional, based on the geometric construction of phi is this: This formula for phi can also be expressed all in fives as: Φ = 5 ^ .5 * .5 + .5   Another formula for phi based entirely on 5's, an original insight … [Read more...]

Geometric and Golden Means

May 15, 2012 by Gary Meisner 3 Comments

What do we mean by "mean?" Math isn't tough, but it can be mean.  The term "mean" in mathematics simply reflects a specific relationship of one number as the middle point of two extremes. Arithmetic means The arithmetic mean of 2 and 6 is 4, as 4 is equally distant between the two in addition: 2 + 2 = 4 and 4 + 2 = 6 For the arithmetic mean (b) of two numbers (a) and … [Read more...]

Search GoldenNumber.net

Now on On Amazon for about $20 with
over 500 reviews, a 4.7 rating and 82% 5-star reviews!
"Magnificant Book - A Work of Art" · "An incredible achievement." · "Currently the best book of its kind!"

PhiMatrix design software for artists, designers and photographers

Is beauty based on the golden ratio?

da Vinci and the Divine proportion

Most Popular Articles

  • Gary Meisner's Latest Tweets on the Golden Ratio
  • Art Composition and Design
  • Facial Analysis and the Marquardt Beauty Mask
  • Markowsky's “Misconceptions" Debunked
  • What is the Fibonacci Series?
  • Golden Ratio Top 10 Myths and Misconceptions
  • Overview of Appearances and Applications of Phi
  • The Perfect Face, featuring Florence Colgate
  • Facial Beauty and the "New" Golden Ratio
  • Google's New Logo Design
  • The Nautilus shell spiral as a golden spiral
  • The UN Secretariat Building Design
  • The Design of the Parthenon
  • Phi, Pi and the Great Pyramid of Egypt at Giza
  • Leonardo da Vinci's Salvator Mundi
  • Michelangelo's Sistine Chapel

Most recent articles

  • Pi is 3.1446 per “Measuring Pi Squaring Phi” by Harry Lear—Reviewed
  • Pi = 3.14159… vs Pi = 3.1446… – Circumference solution
  • Pi = 3.14159… vs Pi = 3.1446… – A simple solution
  • The World’s Most Beautiful Buildings, According to Science and the Golden Ratio
  • GDP growth subcycles and the Golden Ratio
  • The Science Channel Parthenon documentary features Gary Meisner as Golden Ratio Expert
  • Light, the Human Body, Chakras and the Golden Ratio
  • Golden Ratio Interview – December 2020
  • Quantum Gravity, Reality and the Golden Ratio
  • The Golden Ratios of the Parthenon
  • The Parthenon and the Golden Ratio: Myth or Misinformation?
  • Donald Duck visits the Parthenon in “Mathmagic Land”
  • Carwow, best-looking beautiful cars and the golden ratio.
  • “The Golden Ratio” book – Author interview with Gary B. Meisner on New Books in Architecture
  • “The Golden Ratio” book – Author interview with Gary B. Meisner on The Authors Show

Recommended Books at Amazon

The Golden Ratio - The Divine Beauty of Mathematics
Phi: The Golden Ratio
Mathematics of Harmony
Divine Proportion
Sacred Geometry

Geometry in Style and Fashion

Sacred geometry Jewelry
Sacred Geometry Jewelry from Ka Gold Jewelry (and Golden spiral article)

Links

The Golden Ratio Book on Amazon
PhiMatrix Golden Ratio Design Software
PhiMatrix on Facebook
Site Map
Privacy Policy

Design and the golden ratio

Design basics · Graphic Design · Product design · Logo design · Photo composition · Photo cropping

Search GoldenNumber.net

Spam-free updates from the Phi Guy

Subscribe to GoldenNumber.net

Phi 1.618: The Golden Number

Dedicated to sharing the best information, research and user contributions on the Golden Ratio/Mean/Section, Divine Proportion, Fibonacci Sequence and Phi, 1.618.

Connect with me socially


© 1997–2025 PhiPoint Solutions, LLC
.
The Golden Ratio · Φ · Phi · 1.618...
.