## Just can’t get enough of Phi? Here’s a couple of ways to get as much as most anyone would ever need.

There are millions of places to find phi, but here’s some help in finding phi to a million places. You can download the PhiCalculator, a program provided free of charge by Alireza Shafaei. It will compute phi to the number of decimal places you specify, to 1 million and maybe more, and output the results to a text file. He’s also provided the C++ Source Code and a text file of Phi to 100,000 places.

Note: PhiCalculator was scanned with McAfee as of March 29, 2008 and found to be virus free but the user assumes all risks of use.

## For those of you with smaller appetites, here it is to 20,000 places:

1.61803398874989484820458683436563811772030917980576286213544862270526046281890 244970720720418939113748475408807538689175212663386222353693179318006076672635 443338908659593958290563832266131992829026788067520876689250171169620703222104 321626954862629631361443814975870122034080588795445474924618569536486444924104 432077134494704956584678850987433944221254487706647809158846074998871240076521 705751797883416625624940758906970400028121042762177111777805315317141011704666 599146697987317613560067087480710131795236894275219484353056783002287856997829 778347845878228911097625003026961561700250464338243776486102838312683303724292 675263116533924731671112115881863851331620384005222165791286675294654906811317 159934323597349498509040947621322298101726107059611645629909816290555208524790 352406020172799747175342777592778625619432082750513121815628551222480939471234 145170223735805772786160086883829523045926478780178899219902707769038953219681 986151437803149974110692608867429622675756052317277752035361393621076738937645 560606059216589466759551900400555908950229530942312482355212212415444006470340 565734797663972394949946584578873039623090375033993856210242369025138680414577 995698122445747178034173126453220416397232134044449487302315417676893752103068 737880344170093954409627955898678723209512426893557309704509595684401755519881 921802064052905518934947592600734852282101088194644544222318891319294689622002 301443770269923007803085261180754519288770502109684249362713592518760777884665 836150238913493333122310533923213624319263728910670503399282265263556209029798 642472759772565508615487543574826471814145127000602389016207773224499435308899 909501680328112194320481964387675863314798571911397815397807476150772211750826 945863932045652098969855567814106968372884058746103378105444390943683583581381 131168993855576975484149144534150912954070050194775486163075422641729394680367 319805861833918328599130396072014455950449779212076124785645916160837059498786 006970189409886400764436170933417270919143365013715766011480381430626238051432 117348151005590134561011800790506381421527093085880928757034505078081454588199 063361298279814117453392731208092897279222132980642946878242748740174505540677 875708323731097591511776297844328474790817651809778726841611763250386121129143 683437670235037111633072586988325871033632223810980901211019899176841491751233 134015273384383723450093478604979294599158220125810459823092552872124137043614 910205471855496118087642657651106054588147560443178479858453973128630162544876 114852021706440411166076695059775783257039511087823082710647893902111569103927 683845386333321565829659773103436032322545743637204124406408882673758433953679 593123221343732099574988946995656473600729599983912881031974263125179714143201 231127955189477817269141589117799195648125580018455065632952859859100090862180 297756378925999164994642819302229355234667475932695165421402109136301819472270 789012208728736170734864999815625547281137347987165695274890081443840532748378 137824669174442296349147081570073525457070897726754693438226195468615331209533 579238014609273510210119190218360675097308957528957746814229543394385493155339 630380729169175846101460995055064803679304147236572039860073550760902317312501 613204843583648177048481810991602442523271672190189334596378608787528701739359 303013359011237102391712659047026349402830766876743638651327106280323174069317 334482343564531850581353108549733350759966778712449058363675413289086240632456 395357212524261170278028656043234942837301725574405837278267996031739364013287 627701243679831144643694767053127249241047167001382478312865650649343418039004 101780533950587724586655755229391582397084177298337282311525692609299594224000 056062667867435792397245408481765197343626526894488855272027477874733598353672 776140759171205132693448375299164998093602461784426757277679001919190703805220 461232482391326104327191684512306023627893545432461769975753689041763650254785 138246314658336383376023577899267298863216185839590363998183845827644912459809 370430555596137973432613483049494968681089535696348281781288625364608420339465 381944194571426668237183949183237090857485026656803989744066210536030640026081 711266599541993687316094572288810920778822772036366844815325617284117690979266 665522384688311371852991921631905201568631222820715599876468423552059285371757 807656050367731309751912239738872246825805715974457404842987807352215984266766 257807706201943040054255015831250301753409411719101929890384472503329880245014 367968441694795954530459103138116218704567997866366174605957000344597011352518 134600656553520347888117414994127482641521355677639403907103870881823380680335 003804680017480822059109684420264464021877053401003180288166441530913939481564 031928227854824145105031888251899700748622879421558957428202166570621880905780 880503246769912972872103870736974064356674589202586565739785608595665341070359 978320446336346485489497663885351045527298242290699848853696828046459745762651 434359050938321243743333870516657149005907105670248879858043718151261004403814 880407252440616429022478227152724112085065788838712493635106806365166743222327 767755797399270376231914704732395512060705503992088442603708790843334261838413 597078164829553714321961189503797714630007555975379570355227144931913217255644 012830918050450089921870512118606933573153895935079030073672702331416532042340 155374144268715405511647961143323024854404094069114561398730260395182816803448 252543267385759005604320245372719291248645813334416985299391357478698957986439 498023047116967157362283912018127312916589952759919220318372356827279385637331 265479985912463275030060592567454979435088119295056854932593553187291418011364 121874707526281068698301357605247194455932195535961045283031488391176930119658 583431442489489856558425083410942950277197583352244291257364938075417113739243 760143506829878493271299751228688196049835775158771780410697131966753477194792 263651901633977128473907933611119140899830560336106098717178305543540356089529 290818464143713929437813560482038947912574507707557510300242072662900180904229 342494259060666141332287226980690145994511995478016399151412612525728280664331 261657469388195106442167387180001100421848302580916543383749236411838885646851 431500637319042951481469424314608952547072037405566913069220990804819452975110 650464281054177552590951871318883591476599604131796020941530858553323877253802 327276329773721431279682167162344211832018028814127474431688472184593927814354 740999990722332030592629766112383279833169882539312620065037028844782866694044 730794710476125586583752986236250999823233597155072338383324408152577819336426 263043302658958170800451278873115935587747217256494700051636672577153920984095 032745112153687300912199629522765913163709396860727134269262315475330437993316 581107369643142171979434056391551210810813626268885697480680601169189417502722 987415869917914534994624441940121978586013736608286907223651477139126874209665 137875620591854328888341742920901563133283193575622089713765630978501563154982 456445865424792935722828750608481453351352181729587932991171003247622205219464 510536245051298843087134443950724426735146286179918323364598369637632722575691 597239543830520866474742381511079273494836952396479268993698324917999502789500 060459661313463363024949951480805329017902975182515875049007435187983511836032 722772601717404535571658855578297291061958193517105548257930709100576358699019 297217995168731175563144485648100220014254540554292734588371160209947945720823 780436871894480563689182580244499631878342027491015335791072733625328906933474 123802222011626277119308544850295419132004009998655666517756640953656197897818 380451030356510131589458902871861086905893947136801484570018366495647203294334 374298946427412551435905843484091954870152361403173913903616440198455051049121 169792001201999605069949664030350863692903941007019450532016234872763232732449 439630480890554251379723314751852070910250636859816795304818100739424531700238 804759834323450414258431406361272109602282423378228090279765960777108493915174 887316877713522390091171173509186006546200990249758527792542781659703834950580 106261553336910937846597710529750223173074121778344189411845965861029801877874 274456386696612772450384586052641510304089825777754474115332076407588167751497 553804711629667771005876646159549677692705496239398570925507027406997814084312 496536307186653371806058742242598165307052573834541577054292162998114917508611 311765773172095615656478695474489271320608063545779462414531066983742113798168 963823533304477883169339728728918103664083269856988254438516675862289930696434 684897514840879039647604203610206021717394470263487633654393195229077383616738 981178124248365578105034169451563626043003665743108476654877780128577923645418 522447236171374229255841593135612866371670328072171553392646325730673063910854 108868085742838588280602303341408550390973538726134511962926415995212789311354 431460152730902553827104325966226743903745563612286139078319433570590038148700 898661315398195857442330441970856696722293142730741384882788975588860799738704 470203166834856941990965480298249319817657926829855629723010682777235162740783 807431877827318211919695280051608791572128826337968231272562870001500182929757 729993579094919640763442861575713544427898383040454702710194580042582021202344 580630345033658147218549203679989972935353919681213319516537974539911149424445 183033858841290401817818821376006659284941367754317451605409387110368715211640 405821934471204482775960541694864539878326269548013915019038995931306703186616 706637196402569286713887146631189192685682691995276457997718278759460961617218 868109454651578869122410609814197268619255478789926315359472922825080542516906 814010781796021885330762305563816316401922454503257656739259976517530801427160 714308718862859836037465057134204670083432754230277047793311183666903232885306 873879907135900740304907459889513647687608678443238248218930617570319563803230 819719363567274196438726258706154330729637038127515170406005057594882723856345 156390526577104264594760405569509598408889037620799566388017861855915944111725 092313279771138032943765475090165169496509916073833937715833230245701948347400 070437618671998483401631826008462619656284649118225688857521346375490254180833 821383522245258726789379505375915603579454698509102256225455003017571049469833 483545323835260787092219304581782306012370753280678368541306584636788866433486 249368010198782799630670259543265137806007386392908564830874157618741897345848 450141889765293411013722158643559915527113623322003526677859159890231446163321 026519665907632061524383747619049531582968836265042094840105654589130629827717 249809641959472340465110419821347689354018038256954956286039244264159867485982 280060353862839166201252826607493306196584965199979419393226017235710733642537 083033011433624985753635970424446475998999950855041354977558585934576590926533 307252775416758431466936767806170350120038448748838233760344077515947781221883 070900087386627362091660799050226989270321899760379509890591085910392967345614 610700304581921273892599269610621167643642438350141020408632149917815297968152 237983224273753657008553469979655413859050326836160222788475547062698439108852 103020768604706804556846560491686498860616222952323907098092629302337956482179 981632645827888877674520846371971063478923106675469355047615197781699025881840 407927510901824482787052505976983753514306224450902202382439823125505841623207 188319300693606464682096595006549290109716186526367216107417136183776673327975 626854801245657682790317603946555394523143387567730349791578588591011663748455 675847952713918608782540104233329857442747118969610485126401975043599092076621 558998660736837623188358845081292950114665354828171448464056865246540907815471 619625784469575262569455165601519164029217988548909373280314651922247590030965 715490505361043776868772619159528449204647868973473708598413845131621192972012 634240773694545981865029659233534512568454974541129819735876670728601616056204 230636066130281496773445797737750557564665475256322648177116997857087122831543 104569123262503497681152452174497396136748822046480519688754341969511933120450 216051429384844754523821270143830957855813619678302310685080845876952059053294 683384904712099162556365034003439670828933698367423001575117385151269123066172 276414421607512917341874714315093241924914160969998672815823859257359823894849 274919646152272273338746312138436262116379467062032630225055489580573083750461 299231136299173069489407342588319483999274163950984439634057635284717562762192 786522539608720131080486406534396168875452534263098969517619019770963192258709 342165955974471750157538376741522280570650280683143356524917199733358403064153 550759115974264366482846628136802174505909705894602744292632222215459450758046 571206068639904308236939693208237490767561190171561305424813311715242568478463 363770015204417916501168232575236160495749706390822443444510351219048819830276 001766809850965245439007199098034993026860675523879685292194732393352370086650 221407464554037222343481675749373144640928379006539196774010355861936181566836 616864892395554961452826472894994160615803045867891461971728155451100056660542 499691974102798740593276434953714525167694620698597880946950174730228414275718 871940921209137994059430370504364838600434645227993302923901865922689874992113 256560557840142335426058951056203690720289393159204404768359276364799600596404 860761989159298194950878786027663459905404263770045900803279434720629825445256 356479542992488198646136171314485773469953475577155491384239289401754034139973 846169481293479242234609743019627523013828607224496380953838401526567819764507 588547855155492345234781646033062938842009950803260140918302574385770671025227 243666905988908545015570754230316665924723528924702588624794887546252765727285 151112878270673454310244515233456542284311039679528296250193698939983473961763 988095735415260145372964681473821843600521099472119416591494716705203792255209 633645848468041447780302164728623999264048363508773747824501638200895240322534 379925790129265640155537754091751704419627285039126695956664877242967660367303 453668734049079141886945214715827908157233969124039985869390855173079801955546 128513408912061084012213617070570430060569246855916468834773320856891412679428 448041384682813256929148160109786272696866867373917118931462269134894580427789 899608144709524762905019260311649206867743318661546966896601822663578788750608 856243562678932797354633904182108774638039216244772025672699596391824687788455 497179038515839204748319903127622437066235092518775434140107112335865907748122 063763459019884225472727655290504399502524440391136582670813300580588209460310 208261341369127572936992893029961730892843670315238589753987388936807441526373 794240506448764171768613552343269865728970463069180174277972173889859443284852 057257588337563820150546720651674252681894851673328046307647813293132602893229 366045210213189812987661526244487486693890406178469916665417485084597970146178 215845014919572109825089234517474512254327386819725864944588083771398685065984 085457731654169174067052111949166286337732263753475666370022120327524389997736 006074042702972203634778048298834855189525079474605519940340110771169725644261 005092059843362535847069597185762616776630211747878341975644501838041029203240 408826617344339090263522350506828582854432839618480925376130820115626869907999 117084755586982150310073563240421988569584200682439926953784403202222374628147 659230605547476936830576549677690471159625502474507809624837449908025613750915 622359081010534493941774294277091445166668700415228544638076615351141556487854 936011387473103828773313388391709646174829063156788065182761765798535021665998 607464012674884121130098549938337106031962506702797524310119377335548537011694 674858888363080333287739571656275340367272180705622562326374148833499289970258 977299224036941750743427314194157432466794578586039894075097356363688815672159 676354380665593938934382075984061216064317664421902677773799145579945031468708 716266226524133590569928494006372744908821635242948022566330458553636337251762 049074624062938962390622030424872688432377631733574205753997574373508409657792 180880089420590662572782307692788656445563758012667280952527379828030076636976 928164844651277473822397061738567507146692748220374881122563994075227626464994 658463674019559973702838393119884822335539964978333165008467491254522956512409 390963784095416901234675375280139080830863022653352387069273071984654649454979 101134287154636695543437462154391886526085366974366530588562164411648068912837 357794341530609478457270987037976921346205969538843826760827659181773627669918 727803754219954172428335791064520613736884708545165822193158645377018313401818 827251099922917614711860529176551422881123566217241692680620648845317615164272 953585798375412375876100415475805595730122459276711895277333823356043374201321 392804317053379463646428351993014576706491847707768959885421647973371769625943 938648074893633201098893643528324494132569317438323509258286421276209473432879 984387198291625035886368857440896091619767553023636147840186271827708891360398 933077293060296717760258418030133475474406093218222662077059842476082637941388 598601935208959821941885723823714271930349354518240112671046073097412681279072 726438685681544729144826761389945092064098792647692574698812334642995267308237 405720406143748700867048612599590178424976845844736824827947824753176338174814 799571031203396345226743415123722322454626546328353564246627786460839872179127 843089641636422237152822199860850600158245169478318926060165827491142774933502 865503727691068107557826463340399219222602208590967841860013859653877265826244 657597694069240541804444738471607901449743018055889337623761296918229234768453 759556468421122698731637506249971182291485689604472527760093934343558339195165 132985623645893149101860849683480338090932736261062054795970421298669883573560 404347128399801249802209466851093490407878450102117684276345079137687609746900 665759683043519266676563960922648845670212850744821184836102907689196493402300 641753173483914758916672023069245347107627719792524997328576890388680141780313 799483651089527220946591304506656658258539174690486872649902546765966599164547 365134259755577397348506528439977384490513905829430130008366961455669748537793 407881277215791487210719258869089277878732982982214574233273265987982756950898 845306240223036486347722967056524127035887830281940074980575439016285786745531 327197652607107643153112391526077219362144346096089758726934223674331613718574 577608117751518069662104795585140130069701845007026290479492570837120175279378 554957627391245587148332010170361840521636818017341425089806160634676330850504 184585816629334093479199103685913053789482158651701181210113330006695775232786 685518078256752836149494920745837336845813691407977595925267273966423478746614 399819648081036705066005238269165055144634711116867428177319502560642951637959 659475644987891461446925936629309364804816174059808214254340525211371332408113 913579971622858101419103410460569290782498956214560041045692221416830893236662 517618696271719453854998551484275173369241202680159928083201458300754484742331 264387808478085056104304909999364345905195187494843696772757473359670883349609 157447435750398602016397666114276536952670441155200193914842934601015129531174 458876483070371677396154265591399083037577663021309908712719887069032930470124 105861506399852998141757804303480803588203202011047607004755710169423412034108 915643947825303164593730437558194686752534953230130276782353560116641311177996 099793662043449569683547930754311327558643189731515171064432189249793277801264 964764475467078165807406131259375271847408816115479818307816751047809291413954 564631160581269051753953556915775580410671981231638405277556052272223764711883 233223099585068971018717504781906533494858423259762256575841898529144717833517 322602985786292943465056366932162627673816245957417932698892327220666636081992 490988831468529940991386734446049670842442978243630232938910355965601739942201 988690257245471401633009612146187208365108688185334060622017099515827070442337 042180176696349133695996064322005328873494893135966030424380804565944743335678 31672703729636367594216999379522 |

Did you find what you were looking for?

Mason says

Phi is cooler than Pi.

ace says

Why? Pi is embedded into the structure of the universe and nature more than Phi is.

Seizure Man says

No, Phi is in the structure of so many things in nature. Give me a list of things pi is embedded in in nature.

Some Guy says

1. Pie

No further examples required.

Hdt80bro says

Yes there is, just a food named after a number isn’t explaining enough (and it just happens to have a circle in it). There’s tau in there too.

Yes, you do have to explain. Just because it is named after a food, that doesn’t mean that it is explained. Although in is circular, there’s tau in there too.

Pie in spanish is foot

Just by circles, which you could use tau (radius to circumference). And in waves, if you are using radians, which come out of the distance on the circumference in the arc you use, (2 pie is the whole circumference), and tau makes a lot more sense there. (pie = 1/2 tau). What else are you thinking of?

Phi is the structure of life, art and the delicate fingerprint of life coming to reality against ALL odds(creator).(helps to understand the world)

While Pi is used in varies of mathematical solutions, some to help create and construct varies of things in 3D.(helps to describe the world)

but phi is in almost all of nature you see if you draw one shape and then you go an angle of phi you will never overlap completely so this is the best way of getting water/ sunlight/ food

+the symbol of phi looks like earth with a cross through it

also could someone tell me what that symbol actually means is or if it just looked cool

love sciency guy

If you go at any irrational angle, you will never get back to the beginning. It is possible that plant growth follows something like a golden spiral which would generate φ.

Phi is actually one of the Greek letters used in math.

In The DaVinci Code, the golden number is expertly explained and it is rather fascinating.

I have read that and was truly fascinated. I must say I prefer the lesson known Phi, to Pi! A friend of mine can recite 152 digits of Pi. I am going to try to do the same for Phi!

Actually you don’t have to memorize it. When I use Pi in my artworks or to compose a password I just use a pencil amp and paper. It’s just simple addition.

I agree

i think phi is better

wholesomely agr

Yeah pi get boring but phi, phi never gets old.

Pi is just for circle and phi，almost every ‘golden’ (object)

So if you add all those numbers up and divided them by 20,000 would you get Phi?

No, the numbers are likely random and individually have no relationship to phi. If you add any set of random numbers from 0 to 9 and compute average you’re likely to get 4.5.

Heh, heh. This was posted on pi day.

I have just checked and the average is equal to exactly 4.50015

Good work! That confirms that the average of a set of random numbers from 0 to 9 is going to be 4.5. The small variance of 0.00015 is just statistical variation that will grow smaller and smaller as you add more digits to the sample population and analysis.

Does this also imply over a large enough sample size the number of digits that represent each number will be 10%? As in, 10% of the number will be 0s, 10% 1s, 10% 2s, etc.?

Yes, in an infinite string of completely random numbers, one would expect to find the ten digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 each appearing 1/10th, e.g. 10%, of the time.

Yes, Phi is a H of a lot cooler than Pi

DaVinci Code??

I heard about this in the Da Vinci Code.

Now that is a great book….

I heard about this on Da Vinci Code too. When I heard about it I had to look it up because it sounded so amazing and now my brain hurts after browsing this website.

Actually you don’t have to memorize it. When I use Pi in my artworks or to compose a password I just use a pencil amp and paper. It’s just simple addition.

pi sucks because really the only thing it has a use for is dealing with circles. Phi is the ratio of everything: that’s is seriously awesome

Don’t be rude, ever heard of e^iπ=-1?

How about e^iΤ=1?

pi is incredibly useful… if you know anything about signals, which is literally everything in the universe, as our brains are basically sensory signal processors. From that we construct our image of reality. Look up Fourier Transform

Replace with tau. All of that was based on the wave that pie makes with sine (at least that’s the basics). What about Tau? It looks the same, just mirrored. It does the same thing.

Pi is more helpful in solving sums whereas phi is present in almost all forms of nature. Both of them are cool to me because of their unique individual characteristic…

I don’t think pi or phi is better or worse…

If we want to be really existential, think about this:

Numbers don’t care who is better. Numbers don’t make judgements.

It is the job of the mathematician to understand numbers. Therefore, a good mathematician would not have preferences for numbers either.

I’ll have to disagree with your logic. Think about what you’re saying, but in a different context:

“Viruses don’t care who is better. Viruses don’t make judgements. It is the job of the biologist to understand viruses. Therefore, a good biologist would not have preferences for viruses either.”

Ask any good biologist which virus he’d like to be injected with and I think you’ll find some very well defined preferences.

Yes Pi is circles but circles are nearly everything. Planets, stars, orbits molecular and galactic. Phi is Pi with an extra dimension time added, like a spiral is a circle plus time, a vortex is a spiral plus time, and a torus is a vortex plus time…

No explanation required.

But φ is still pretty cool, though. At least better than π.

Wouldn’t the C++ program run a little faster if you used ‘memset’ Instead of a for cycle to fill the array with 0s?

I look at the coad then I look at the comment… Guyz why you people are fighting with Pi & Phi?… When you don’t focus on the main necessity of this article… Btw… 2 are 2 kinds of used roshio… Thanx Admin… It will help me a lot… 🙂

I’m just sitting here laughing at the people arguing over whether pi is better or phi is better – and they can’t even spell pi correctly.

I just did some research on phi and this is probably the best website I found thank you

I’m trying to memorise digits of phi…I’m at 50, wish me luck!

Good luck. I’m at 213

I’m only on 40 D~¦

It’s just that people who are around me knows nothing about phi but knows a lot about pi………..I prefer phi better as its cool, but pi is as cool and awesome. 🙂

Langlands theory takes us from Grothendieck to a mathematical physics basis. Phi is the introduction to begin to compute the dimensional mechanics of space and time from the Hilbert program and learn the newer Brane physics.

Wowowowoowowooowowowowow

Pi is more helpful in solving sums whereas phi is present in almost all forms of nature. Both of them are cool to me because of their unique individual characteristic…

Pie is a food you cut and share… Now the Phi is the whole pie all 360 degrees of it .. And the people wouldn’t understand that portion they got cut of the wholetality without the center or prince of the Phi , dubbed pi . So God the whole of all gave himself and theoretical ending to teach man the signs of times to show the true meaning of Wholetality by creating a prince or end. They one and two do not exist until after the 6 8 are found and neither are found until 4 or 5 because no one new the 9th existed to truelly get to 10 , dimensions that is. Your mind is a lotus. Sometimes you have to die a little everyday to live a little. What better way than killing your brains cells by what they where made for, thinking. Your brain has more compactity than we use it for, but that’s be cause we haven’t learn realations is a ship of its own in a sea of its on. A ship that will never sail if you don’t unlock it. A sea that will forever run dry if you don’t drink and swim in its waters… God is whole. 360 degrees and one day man will be whole with him. Dimensions of the mind is just like the universe… They are the same from Atom on the Eve of creation. Nothing starts without three. Understand we got it wrong… Ters are not true they are real.. Imaginary is just important as real. God is true . A man can be true and real in the same mind. That’s why God created Us all four of uses… That way we could grow to the level where he could join all of Us and use our hands created after he seen the monkeys hands… Kappa phi sigma pi

The reverse function on lines 66 and 149 in the c++ file wasn’t in scope until I added #include . I’m using g++ version 4.8.4 on a Linux distro. I appreciate the code! Thanks!

#include < algorithm >

Wow. I can’t believe how many people are arguing about two simple irrational numbers. If you actually like either one, you would just learn about our and ect. You wouldn’t just spend your time arguing about two numbers that with both, with an equation, make beautiful things.

This is just my opinion on this situation. People are just arguing with other random people just because of two irrational numbers. It’s like going up to a random person wearing pink and saying, “HEY! PURPLE IS BETTER!” And just arguing about the two colors until sunset.

As an artist I come down on the side of Phi. It is found in everything from the Parthenon to the Mona Lisa and the Last Supper. It was not a man made concept but rather from the observation of nature. The nautilus, spiral galaxies, the proportions of the the human body and face. I utilize the Golden Mean in my own artwork.

Oh yes, it’s not for nothin’ that it’s often called the Divine Number or Divine Proportion.

e (euler’s constant or base of natural logaritm) is controling both pie and phi…

ha ha he he hu hu…

Phi (spiral) is Pi (circle) with an extra dimension time added, like a spiral is a circle plus time, a vortex is a spiral plus time, and a torus is a vortex plus time…

Sorry but it seems that this phi number is only accurate to the first 142 places. I wrote a Python program to check the accuracy of this number and it was fine for the 142 digit. After the sequence ….216269 the list of numbers here differs. Here is what my code generated.

1.618033988749894848204586834365638117720309179805

76286213544862270526046281890244970720720418939113

74847540880753868917521266338622235369317931800607

66726354433389086595939582905638322661319928290267

880675208766892501711696207032221043216269 72654306

56414640739624780407494551171076664365525976060013

32089764512620148275334237805965332764071218488345

I wanted all of phi

A perfect circle is a concept, it doesn’t exist in nature. Phi and its approximations are everywhere in Nature.

We know that the area of a circle is the radius squared x pi.

We also know that the volume of a cylinder is the area of the circle that it makes x height.

The volume of a deep dish pizza is as follows:

Let the radius of the pizza = Z and the depth = A

Then the volume of the deep dish pizza is the area x depth. Therefore:

Area = pi z² = pi zz

Depth = A

So, the volume a pizza = pi z z a

so?

Not So. Phi. It’s an acquired taste.

You say “one million” places, but the number of places is 100,000. This number is one hundred thousand, NOT one million! Oops! You should fix that!

The article says, “You can download the PhiCalculator, a program provided free of charge by Alireza Shafaei. It will compute phi to the number of decimal places you specify, to 1 million and maybe more, and output the results to a text file. He’s also provided the C++ Source Code and a text file of Phi to 100,000 places.” So you get the million places on your own with the program, not the downloaded text file.

wouldn’t phi day be on march 2nd and march 1st on leap year

I’m not sure which starting point you’re using to get to March 1 or 2. It looks like that would put the start at July 19. In any event, a leap year adds 0.618 days to the calculated Phi Day, so that would shift it from Day 225.58 to Day 226.20.